Fast Scalar Multiplications on Hyperelliptic Curve Cryptosystems

نویسندگان

  • Lin You
  • Jiwen Zeng
چکیده

Scalar multiplication is the key operation in hyperelliptic curve cryptosystem. By making use of Euclidean lengths of algebraic integral numbers in a related algebraic integer ring, we discuss the Frobenius expansions of algebraic numbers, theoretically and experimentally show that the multiplier in a scalar multiplication can be reduced and converted into a Frobenius expansion of length approximate to the field extension degree, and then propose an efficient scalar multiplication algorithm. Our method is an extension of the results given by Müller, Smart and Günther et al. If some (optimal) normal basis is employed, then, for some hyperelliptic curves over finite fields, our method will make the computations of scalar multiplications be lessened about fifty-five percent compared with the signed binary method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skew-Frobenius Maps on Hyperelliptic Curves

The hyperelliptic curve cryptosystems take most of the time for computing a scalar multiplication kD of an element D in the Jacobian JC of a hyperelliptic curve C for an integer k. Therefore its efficiency depends on the scalar multiplications. Among the fast scalar multiplication methods, there is a method using a Frobenius map. It uses a Jacobian defined over an extension field of the definit...

متن کامل

Some properties of $τ$-adic expansions on hyperelliptic Koblitz curves

This paper explores two techniques on a family of hyperelliptic curves that have been proposed to accelerate computation of scalar multiplication for hyperelliptic curve cryptosystems. In elliptic curve cryptosystems, it is known that Koblitz curves admit fast scalar multiplication, namely, the τ -adic non-adjacent form (τ -NAF). It is shown that the τ -NAF has the three properties: (1) existen...

متن کامل

Efficient explicit formulae for genus 3 hyperelliptic curve cryptosystems over binary fields

The ideal class groups of hyperelliptic curves(HECs) can be used in cryptosystems based on the discrete loga-rithm problem. Recent developments of computational technolo-gies for scalar multiplications of divisor classes have shown thatthe performance of hyperelliptic curve cryptosystems (HECC) iscompatible to that of elliptic curve cryptosystems (ECC). Espe-cially, genu...

متن کامل

Superscalar Coprocessor for High-Speed Curve-Based Cryptography

We propose a superscalar coprocessor for high-speed curvebased cryptography. It accelerates scalar multiplication by exploiting instruction-level parallelism (ILP) dynamically and processing multiple instructions in parallel. The system-level architecture is designed so that the coprocessor can fully utilize the superscalar feature. The implementation results show that scalar multiplication of ...

متن کامل

Fast Elliptic Curve Multiplications Resistant against Side Channel Attacks

This paper proposes fast elliptic curve multiplication algorithms resistant against side channel attacks, based on the Montgomerytype scalar multiplication. The proposed scalar multiplications can be applied to all curves over prime fields, e.g., any standardized curves over finite fields with characteristic larger than 3. The method utilizes the addition formulas xECDBL and xECADD assembled by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Informatica (Slovenia)

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2010